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1. Introduction. High-order tensors often appear in factor analysis problems in15

various disciplines like psychometrics, chemometrics, econometrics, biomedical signal16

processing, computer vision, data mining and social network analysis to just name a17

few. Low-rank tensor decomposition methods can serve for purposes like, dimension-18

ality reduction, denoising and latent variable analysis. For an overview of high-order19

tensors, their applications and related decomposition methods see [21] and [31]. The20

later is more recent with a focus on signal and data analysis.21

Tensor decomposition may also be considered as an extension of principal compo-22

nent analysis from matrices to tensors. For more information on that see [37]. From23

all kinds of decompositions in the multi-linear algebra domain, we want to focus on24

Tucker decomposition. Introduced by [33], a tensor X ∈ Rn1×...×nd with multi-linear25

rank-(r1, ..., rd) can be written as the multiplication of a core tensor with some ma-26

trices called factor matrices. Factor matrices can be thought as principal components27

for each order of the tensor. Tucker decomposition can be written as28

X = C ×1 U1 ×2 ...×d Ud ,29

where C ∈ Rr1×...×rd and Ui ∈ St(ni, ri) denote the core tensor and each of the30

factor matrices, respectively. The constraint St(ni, ri) is the set of all orthonormal ri31

frames in Rni which used to guarantee the uniqueness of this decomposition. Usually32

ri << ni so the tensor C can be thought as the compressed or dimensionally reduced33

version of tensor X . The storage complexity for Tucker decomposition is in the order34

of O(rd+dnr), instead of O(nd) for the original tensor X . In this setting, it is enough35

to find the factor matrices because it can be shown that with tensor X and set of36

factor matrices {U} at hand, the core tensor can be computed as37

C = X ×1 U
T
1 ×2 ...×d UTd .38

Other common constraints for Uis are statistical independence, sparsity and non-39

negativity [9, 27]. These kinds of constraints also impose a prior information on the40
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2 M. H. FIROUZEHTARASH AND R. HOSSEINI

latent factors and make the results more interpretable. Additionally because of the41

symmetry that exists in the problem, we will later see that we can assume Uis to42

be elements of the Grassmann Manifold. Therefore in this paper, we propose a Rie-43

mannian coordinate descent algorithm on the product space of Grassmann manifolds44

to solve the problem.45

Common practice in manifold optimization [1, 5] is all about recasting a con-46

strained optimization problem in the Euclidean space to an unconstrained problem47

with a nonlinear search space that encodes the constraints. Optimization on mani-48

folds have many advantages over classical methods in the constrained optimization.49

One merit of Riemannian optimization, in contrast to the common constrained op-50

timization methods, is exact satisfaction of the constraints at every iteration. More51

importantly, Manifold optimization respects the geometry in the sense that, definition52

of inner product can make the direction of gradient more meaningful.53

Coordinate descent methods [35] are based on the partial update of the decision54

variables. They bring forth simplicity in generating search direction and perform-55

ing variable update. These features help a lot when we are dealing with large-scale56

and/or high-order problems. Coordinate descent methods usually have empirical fast57

convergence, specially at the early steps of the optimization, so they are a good fit58

for approximation purposes.59

In [16], the authors provided an extension of the coordinate descent method to60

the manifold domain. The main idea is inexact minimization over subspaces of the61

tangent space at every point instead of minimization over coordinates (blocks of coor-62

dinates). They discussed that in the case of product manifolds, the rate of convergence63

matches that of the Euclidean setting. With that in mind, we try to compute the64

factor matrices in Tucker decomposition in a coordinate descent fashion. We do this65

by solving an optimization problem for each factor matrix with a reformulated cost66

function and the Grassmann manifold as the constraint.67

Gradient-based algorithms, which commonly used in large-scale problems, some-68

times have convergence issues. So finding a suitable metric helps to obtain better69

convergence rates. In the construction of a Riemannian metric, the common focus70

is on the geometry of the constraints, but it will be useful to regard the role of the71

cost function too when it is possible. This idea was presented in [25] by encoding the72

second order information of the Lagrangian into the metric. We use their method to73

construct a new metric that leads to an excellent performance.74

We put all these considerations together and provide a new method that we75

call Riemannian Preconditioned Coordinate Descent (RPCD). Our paper makes the76

following contributions:77

• Our method is a first-order optimization based algorithm which has advantage78

over SVD based methods and second-order methods in large scale cases. It79

is also very efficient with respect to the memory complexity.80

• We construct a Riemannian metric by using the second-order information of81

the cost function and constraint to solve the Tucker decomposition as a series82

of unconstrained problems on the Grassmann manifold.83

• We provide a convergence analysis for the Riemannian coordinate descent84

algorithm in a relatively general setting. This is done by modification of the85

convergence analysis in [16] to the case when retraction and vector trans-86

port are being used instead of the exponential map and parallel transport.87

Our proposed RPCD algorithm for Tucker decomposition is a special case88

of Riemannian coordinate descent, and therefore the proofs hold for its local89

convergence.90
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The experimental results on both synthesis and several real data show the high per-91

formance of the proposed algorithm.92

1.1. Related works. From an algorithmic point of view, there are two ap-93

proaches to the Tucker decomposition problem: The first one is Singular Value De-94

composition (SVD)-based methods, which are trying to generalize truncated SVD95

from matrix to tensor. This line of thought begins with Higher-Order SVD (HOSVD)96

[10, 17]. The idea is to find a lower subspace for each unfolding of the tensor X ,97

i.e., X(i), for i = 1, ..., d. Although HOSVD gives a sub-optimal solution but when98

dimensionality is not high it can be used as an initialization for other methods.99

Sequentially Truncated HOSVD (ST-HOSVD) [34], is the same as HOSVD but100

for efficiency, after finding each factor matrix in each step, the tensor is projected101

using obtained factor matrix and the rest of operations are done on the projected102

tensor. In an even more efficient method, called Higher Order Orthogonal Iteration103

(HOOI) [11], the authors try to find a low-rank subspace for each Y(i), that is the104

matricization of the tensor Y = X ×−i {UT }. Finding a lower subspace of Y(i) instead105

of X(i), HOOI gives a better low multi-linear rank r − (r1, ..., rd) approximation of106

X in compare to HOSVD. Another method in this category is Multi-linear Principal107

Component Analysis (MPCA) [24], that is also similar to HOSVD, but with a focus108

on the maximization of the variation in the projected tensor C. Hierarchical, stream-109

ing, parallel, randomized and scalable versions of HOSVD are also discussed in the110

literature [15, 32, 2, 8, 29]. Also a fast and memory efficient method called D-Tucker111

were recently introduced in [19].112

The second approach is solving the problem using the common second-order opti-113

mization algorithms. In [12], [30] and [18], the authors try to solve a reformulation of114

the original problem by applying Newton, Quasi-Newton and Trust Region methods115

on the product of Grassmann manifolds, respectively. Exploiting the second-order116

information results in algorithms converging in fewer iterations and robust to the117

initialization. But at the same time, they suffer from high computational complexity.118

Although tensor completion is a different problem than tensor decomposition, but119

it is worth mentioning tensor completion works of [23] and [20] because of the use of a120

first-order Riemannian method on a variant of tensor completion that utilizes Tucker121

decomposition. In [23], the tensor completion problem is solved by the Riemannian122

conjugate gradient method on the manifold of tensors with fixed low multi-linear rank.123

In [20], the authors dealt with the tensor completion problem by solving the same cost124

function with the same method as in [23] but this time on a product of Grassmann125

manifolds. The difference of our method with the later case is in the cost function126

and the method of optimization.127

The rest of this paper is organized as follows: In Section 2, we provide some128

preliminaries and background knowledge. The problem description, the problem re-129

formulation for making it suitable to be solved using the coordinate descent algorithm,130

the metric construction, and the presentation of the proposed algorithms are discussed131

in Section 3. In Section 4, the convergence proof of the Riemannian coordinate de-132

scent algorithm is presented. Experimental results and conclusion comes at the end133

of the paper in Sections 5 and 6.134

2. Preliminaries and Backgrounds. In this paper, the calligraphic letters are135

used for tensors (A,B, ...) and capital letters for matrices (A,B, ...). In the follow-136

ing subsection, we give some definitions. Then, we give some backgrounds on the137

Riemannian preconditioning in the later subsection.138
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2.1. Definitions. Here, we provide some definitions:139

Definition 2.1 (Tensor). A d-order multi-dimensional array X ∈ Rn1×...×nd140

with ni as the dimension of the ith order. Each element in a tensor is represented by141

X (k1, ..., kd), for ki ∈ [ni] = {1, · · · , ni}. Scalars, vectors and matrices are 0-, 1- and142

2-order tensors, respectively.143

Definition 2.2 (Matricization (unfolding)). along the ith order: A matrix X(i) ∈144

Rni×
∏

j 6=i nj is constructed by putting tensor fibers of the ith order alongside each other.145

Tensor mode-i fibers are determined by fixing indices in all orders except the ith order,146

i.e. X (k1, ..., ki−1, :, ki+1, ..., kd).147

Definition 2.3 (Rank). Rank of a tensor is R, if it can be written as a sum of148

R rank-1 tensors. A d-order rank-1 tensor is built by the outer product of d vectors.149

Definition 2.4 (Multi-linear Rank). A tensor called rank-(r1, ..., rd) tensor, if150

we have rank(X(i)) = ri, for i = 1, ..., d, which indicates the dimension of the vector151

space spanned by mode-i fibers. It is the generalization of the matrix rank.152

Definition 2.5 (i-mode product). For tensor X ∈ Rn1×...×nd and matrix A ∈153

Rm×ni , i-mode product X ×i A ∈ Rn1×...×ni−1×m×ni+1...×nd can be computed by the154

following formula:155

(X ×i A)(k1, ..., ki−1, l, ki+1, ..., kd) =

nk∑
ki=1

X (k1, ..., ki, ..., kd)A(l, ki) .156

This product can be thought as a transformation from a ni-dimensional space to157

a m-dimensional space, with this useful property; (X ×i A)(i) = AX(i).158

Definition 2.6 (Tensor norm).159

‖X‖F = ‖X(i)‖F = ‖vec(X )‖,160

where F is the Frobenious norm and vec(.) is the vectorize operator.161

Definition 2.7 (Stiefel manifold St(n,r)). The set of all orthonormal ri frames162

in Rni .163

St(n, r) = {X ∈ Rn×r : XTX = Ir}.164

In this manifold, tangent vectors at point X, are realized by ξX = XΩ + X⊥B,165

where Ω ∈ Skew(r) and X⊥ complete the orthonormal basis that forms by X, so166

XTX⊥ = 0. If vectors in the normal space are identified by νX = XA, we can specify167

A by implying the orthogonality between tangent vectors and normal vectors.168

ξX ⊥ νX : 〈ξX , νX〉 = 〈XΩ +X⊥B,XA〉 = 0 =⇒ A ∈ Sym(r).169

So, the projection of an arbitrary vector Z ∈ Rn×r onto the tangent space would170

be equal to ProjXZ = Z −XA which must comply to the tangent vectors constraint,171

i.e. ξTX +XT ξ = 0:172

(Z −XA)TX +XT (Z −XA) = 0 =⇒ A = Sym(XTZ).173

In Stiefel manifold like any embedded submanifold, the Riemannian gradient ∇f is174

computed by projecting the Euclidean gradient G onto the tangent space of the current175
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point.176

∇f(X) = ProjXG(X) = G(X)−Xsym(XTG(X)).177

Retraction on the Stiefel manifold can be computed by the QR-decomposition,178

where diagonal values of the upper triangular matrix R are non-negative.179

Definition 2.8 (Grassmann manifold Gr(n, r)). We define two matrices X and180

Y to be equal under equivalence relation ∼ over St(n, r), if their column space span181

the same subspace. We can define one of these matrices as a transformed version182

of the other, i.e., X = Y Q, for some Q ∈ O(r), where O(r) is the set of all r by r183

orthogonal matrices.184

We identify elements in the Grassmann manifold with this equivalence class, that185

is:186

[X] = {Y ∈ St(n, r) : X ∼ Y } = {XQ : Q ∈ O(r)}.187

Grassmann manifold Gr(n, r) is a quotient manifold, St(n, r)/O(r) = {[X] : X ∈188

St(n, p)}, which represents set of all linear r-dimensional subspaces in a n-dimensional189

vector space.190

Consider a quotient manifold that is embedded in a total space M given by the191

set of equivalence classes [x] = {y ∈ M : y ∼ x}. If the Riemannian metric for the192

total space M satisfies the following property:193

〈ξx, ηx〉x = 〈ξy, ηy〉y , ∀x, y ∈ [x],194

then a Riemannian metric for the tangent vectors in the quotient manifold can be195

given by:196

〈ξ[x], η[x]〉[x] = 〈ξx, ηx〉x = 〈ξy, ηy〉y , ∀x, y ∈ [x],197

where 〈·, ·〉x is the Riemannian metric at point x, and vectors ξx and ηx belong to198

Hx, the horizontal space of TxM, which is the complement to the vertical space Vx.199

If the cost function in the total space does not change in the directions of vectors in200

the vertical space, then the Riemannian gradient in the quotient manifold is given by:201

∇[x]f = ∇xf202

A retraction operator Rx : Hx →M can be given by:203

R[x](ξ[x]) = [Rx(ξx)],204

where Rx(.) is a retraction in the total manifold.205

2.2. Riemannian Preconditioning. Mishra and Sepulchre in [25] brought the206

attention to the relation between the sequential quadratic programming which embeds207

constraints into the cost function and the Riemannian Newton method which encodes208

constraints into search space. In the sequential quadratic programming, we solve a209

subproblem to obtain a proper direction. For the following problem in Rn,210

min
x

f(x)

s.t. h(x) = 0
211
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where f : Rn → R and h : Rn → Rp are smooth functions, the Lagrangian is defined212

as213

L(x, λ) = f(x)− 〈λ, h(x)〉.214

Since the first-order derivative LU (x, λ) is linear with respect to λ, we have a closed215

form solution for the optimal λ, that is given by216

λx = (hx(x)Thx(x))−1hx(x)T fx(x),217

where fx is the first-order derivative of the cost function f(x) and hx(x) ∈ Rn×p is the218

Jacobian of the constraints h(x). Then, the proper direction at each iteration of the219

sequential quadratic programming is computed by solving the following optimization220

problem:221

min
ξx

f(x) + 〈fx(x), ξx〉+
1

2
〈ξx, D2L(xk, λx)[ξx]〉,

s.t Dh(x)[ξx] = 0.

(2.1)222

The constraints h(x) can be seen as the defining function of an embedded submani-223

fold. If 〈ξx, D2L(xk, λx)[ξx]〉 is strictly positive for all ξx in the tangent space of this224

submanifold at the point x, then the optimization problem has a unique solution.225

There are two reasons why the obtained direction can be seen as a Riemannian New-226

ton direction. First, the constraint Dh(x)[ξx] = 0, that is the Euclidean directional227

derivative of h(x) in the direction of ξx ∈ Rn, implies the fact that the direction must228

be an element of the tangent space. Second, the last part of the objective can be seen229

as an approximation of the Hessian.230

In the neighborhood of a local minimum, Hessian of the Lagrangian in the total231

space efficiently gives us the second-order information of the problem. The Theorem232

below is brought for more clarification.233

Theorem 2.9 (Theorem 3.1 in [25]). Consider an equivalence relation ∼ in M.234

Assume that both M and M/ ∼ have the structure of a Riemannian manifold and235

a function f : M → R is a smooth function with isolated minima on the quotient236

manifold. Assume also that M has the structure of an embedded submanifold in Rn.237

If x∗ ∈M is the local minimum of f on M, then the followings hold:238

• 〈ηx∗ , D2L(x∗, λx∗)[ηx∗ ]〉 = 0, ∀ηx∗ ∈ Vx∗239

• the quantity 〈ξx∗ , D2L(x∗, λx∗)[ξx∗ ]〉 captures all second-order information of240

the cost function f on M/ ∼ for all ξx∗ ∈ Hx∗241

where Vx∗ is the vertical space, and Hx∗ is the horizontal space (that subspace of Tx∗M242

which is complementary to the vertical space) and D2L(x∗, λx∗)[ξx∗ ] is the second-243

order derivative of L(x, λx) with respect to x at x∗ ∈ M applied in the direction of244

ξx∗ ∈ Hx∗ and keeping λx∗ fixed to its least-squares estimate.245

As a consequence of the above theorem, the direction of the subproblem (2.1) of246

the sequential quadratic programming in the neighborhood of a minimum can also be247

obtained by solving the following subproblem:248

arg min
ξx∈Hx

f(x)− 〈fx(x), ξx〉+
1

2
〈ξx, D2L(x, λx)[ξx]〉.249

After updating the variables by moving along the obtained direction, to maintain strict250

feasibility, it needs a projection onto the constraint, thus they name this method fea-251

sibly projected sequential quadratic programming. Now that we know that Lagrangian252
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captures second-order information of the problem, authors in [25] introduced a family253

of regularized metrics that incorporate the second information by using the Hessian254

of the Lagrangian,255

〈ξx, ηx〉x = ω1〈ξx, D2f(x)[ηx]〉+ ω2〈ξx, D2c(x, λx)[ηx]〉,256

which c(x, λx) = −〈λx, h(x)〉. The first and second terms of this regulated metric257

correspond to the cost function and the constraint, respectively. In addition to in-258

variance, the metric needs to be positive, so:259

if fxx � 0 then ω1 = 1, ω2 = ω ∈ [0, 1),260

if fxx ≺ 0 then ω2 = 1, ω1 = ω ∈ [0, 1),261262

where ω can also update in each iteration by a rule like ωk = 1 − 21−k. Mishra and263

Kasai in [20] exploited the idea of Riemannian preconditioning for tensor completion264

task.265

3. Problem Statement. In Tucker Decomposition, we want to decompose a d-266

order tensor X ∈ Rn1×...×nd into a core tensor C ∈ Rr1×...×rd and d orthonormal factor267

matrices Ui ∈ Rni×ri . We do this by solving the following optimization problem:268

(3.1)

min
C,U1,...,Ud

‖X − C ×1 U1 ×2 ...×d Ud‖2F ,

s.t. C ∈ Rr1×...×rd ,
Ui ∈ St(ni, ri), i ∈ [1, . . . , d],

269

where ‖.‖F is the Frobenius norm and ×i is the i-mode tensor product. Domain of270

the objective function is the following product manifold,271

(C, U1, ..., Ud) ∈M := Rr1×...×rd × St(n1, r1)× ...× St(nd, rd).272

Objective function has a symmetry for the manifold of orthogonal matrices O(ri),273

i.e., f({U}) = f({UO}). So, this problem is actually an optimization problem on the274

product of Grassmann manifolds.275

One can use alternating constrained least squares to solve Tucker Decomposition.276

Our method can be considered as a partially updating alternating constrained least277

squares method, because we want to solve the problem 3.1 in a coordinate descent278

fashion on a product manifold. So, at each step we partially solve the following279

problem,280

min
Ui∈Gr(ni,ri)

1

2
‖X(i) − UiUTi X(i)‖2F281

where X(i) is the matricization of the tensor X along ith order. For computing of the282

Euclidean gradient given below283

G(Ui) = −[(X(i) − UiUTi X(i))X
T
(i)Ui +X(i)(X

T
(i) −X

T
(i)UiU

T
i )Ui],284

we face the computational complexity of O(nd+2r2). In coordinate descent methods,285

simplicity in the computation of partial gradient is a key component to efficiency of the286

method. In that matter, we move tensor X to a lower dimensional subspace by the help287
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of the fixed factor matrices and construct the tensor Yi ∈ Rr1×...×ri−1×ni×ri+1...×rd ,288

with the formulation of Yi = X ×−i {UT }. The new problem would be,289

min
Ui∈Gr(ni,ri)

1

2
‖Y(i) − UiUTi Y(i)‖2F290

where Y(i) is the matricization of the tensor Yi along ith order. This time the Euclid-291

ean gradient is equal to292

G(Ui) = −[(Y(i) − UiUTi Y(i))Y T(i)Ui + Y(i)(Y
T
(i) − Y

T
(i)UiU

T
i )Ui],293

which due to the orthonormality of Ui can be reduced to −(I−UiUTi )Y(i)Y
T
(i)Ui. It has294

the computational complexity of O(n3rd+1), which is lower than the previous form.295

We can take a step further and make the objective function even simpler. Here,296

we show that instead of minimizing the reconstruction error, we can maximize the297

norm of the core tensor.298

‖X − C × {U}‖2F =‖vec(X)−
⊗
i

Uivec(C)‖2F

=‖vec(X)‖2F − 2〈vec(X),
⊗
i

Uivec(C)〉+ ‖
⊗
i

Uivec(C)‖2F

=‖vec(X)‖2F − 2〈
⊗
i

UTi vec(X), vec(C)〉+ ‖vec(C)‖2F

=‖X‖2F − ‖C‖2F ,

299

where
⊗

is the Kronecker product of matrices and vec() is the vectorization operator.300

So, for solving the problem (3.1) we can recast it as a series of subproblems involving301

following minimization problem which is solved for the ith factor matrix.302

(3.2) min
Ui∈Gr(ni,ri)

−1

2
‖UTi Y(i)‖2F .303

The Euclidean gradient of the above cost function is G(Ui) = −Y(i)Y T(i)Ui, with the304

computational complexity of O(n2rd), which is even cheaper than the later formula-305

tion. This is not a new reformulation and can be found as a core concept in the HOOI306

method. This form concentrates on the maximization of variation in the projected307

tensor, instead of minimization of reconstruction error in the previous formulations.308

As we mentioned in the introduction, practical convergence of gradient-based309

algorithms suffers from issues like condition number. For demonstrating this problem,310

we solve (3.2) on the product of Grassmannian manifolds equipped with the Euclidean311

metric,312

〈ξUi , ηUi〉Ui = Trace(ξTUi
ηUi),313

for decomposing a tensor X ∈ R100×100×100 with multi-linear rank-(5, 5, 5). The314

relative error for 10 samples of X can be seen in Figure 1.315

To give a remedy for the slow convergence using the Euclidean metric, in the316

next subsection we apply Riemannian preconditioning to construct a new Riemannian317

metric which we will see in the experiments that it results in a good performance.318

3.1. Riemannian Preconditioned Coordinate Descent. In this section, we319

want to utilize the idea of Riemannian preconditioning in solving the problem (3.2).320
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Fig. 1. Convergence of Riemannian coordinate descent with the Euclidean metric for decom-
posing a random tensor having low multilinear rank. The best attainable relative error is zero, and
it is clear that the method with the Euclidean metric has convergence problems.

For the following problem,321

min
Ui∈Gr(ni,ri)

−1

2
‖UTi Y(i)‖2F ,322

the Lagrangian is equal to,323

L(Ui, λ) = −1

2
Trace(Y T(i)UiU

T
i Y(i)) +

1

2
〈λ,UTi Ui − I〉,324

and the first-order derivative of it w.r.t Ui is325

LUi
(Ui, λ) = −Y(i)Y T(i)Ui + Uiλ .326

As it is linear w.r.t λ, we can compute optimal λ in a least square sense,327

λUi
= UTi Y(i)Y

T
(i)Ui ,328

where λUi ∈ Rr×r is a symmetric matrix. Second-order derivative along ξU is com-329

puted as follow330

D2L(Ui, λUi
) = −Y(i)Y T(i)ξUi

+ ξUi
λUi

,331

so a good choice for the Riemannian metric that makes the Riemannian gradient close332

to the Newton direction would be333

〈ξUi , ηUi〉Ui = −ω〈ξUi , Y(i)Y
T
(i)ηUi〉+ 〈ξUi , ηUiλUi〉 ,334

where ω ∈ [0, 1] should be chosen in a way to make the metric positive definite. For335

simplicity, we choose ω = 0, so the metric for this choice would be336

〈ξUi
, ηUi
〉Ui

= 〈ξUi
, ηUi

λUi
〉.337

Variables in the search space are invariant under the symmetry transformation, there-338

fore the computed metric must be invariant under the associated symmetries, i.e.339

Ui → UiQ and λUi
→ QTλUi

Q, Q ∈ O(r),340
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10 M. H. FIROUZEHTARASH AND R. HOSSEINI

that holds for the metric. In the embedded submanifolds, we can compute the Rie-341

mannian gradient by projecting the Euclidean gradient into the tangent space. As342

tangent vectors at point Ui in a Stiefel manifold can be represented by ξ = UiΩ+UiB ∈343

TUiM, where Ω ∈ Skew(r), and by assuming the form of normal vectors to be like344

ν = UiA ∈ NUiM, for having tangent and normal vectors to be orthogonal to each345

other using the new metric, we must have346

〈Ω, AλUi
〉 = 0 =⇒ A = Sλ−1Ui

, S ∈ Sym(r).347

Therefore, by putting the normal vectors at Ui as ν = UiSλ
−1
Ui

, the projection of348

matrix G onto the tangent space can be computed as follows:349

ProjUi
G = G− UiSλ−1Ui

,350

where351

UTi (ProjUiG) + (ProjUiG)TUi = 0,352

therefore353

λUi
S + SλUi

= λUi
(UTi G+GTUi)λUi

.354

The last equation for finding S is a Lyapunov equation. By the Riemannian submer-355

sion theory [1, section 3.6.2] , we know that this projection belongs to the horizontal356

space. Thus, there is no need for further projection onto the horizontal space. If we357

define G as the Euclidean gradient in the total space, we can simply compute the358

Riemannian gradient by359

∇f[Ui] = G+ Ui.360

With the help of the new metric, we introduce the proposed RPCD method in361

Algorithm 3.1.362

Algorithm 3.1 RPCD

Input: Dense tensor X and random initialization for factor matrices {U}
for k = 1 : maxiter do

for i = 1 : d do
Yi ← X ×−i {UT }
G← −Y(i)Y T(i)Ui
∇f ← G+ Ui
Ui ← RUi

(Ui − α∇f)
end for

Ek ←
√
‖X‖2F − ‖UTd Y(d)‖2F

/
‖X‖F

if Ek − Ek−1 ≤ ε then
break

end if
end for

Output: Factor matrices {U}

One of the benefits for the tensor decomposition is that the decomposed version363

needs much less storage than the original tensor. For example, a d-order tensor364

X ∈ Rn×...×n, have nd elements, but the compressed version C ×1 U1 ×2 ... ×d Ud,365

where C ∈ Rr×...×r and Ui ∈ Rn×r, has only rd + dnr elements. This is much smaller366

than the original version due to the assumption r << n.367
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In this setting, ni = n and ri = r, RPCD is memory efficient, which is desirable368

because we wanted to reduce the storage complexity of the original tensor X at the369

first place. To be specific, tensor Y has nrd−1 elements and the Euclidean and the370

Riemannian gradient both has nr elements. Presented algorithm is robust w.r.t the371

change in step-size value but it is worth noting if we set α = 1, then one step of372

the inner loop in the RPCD algorithm can be consider as one step of the orthogonal373

iteration method [14, Section 8.2.4]. In other words, the orthogonal iteration can be374

seen as a preconditioned Riemannian gradient descent algorithm.375

In Algorithm 3.1, constructing the tensor Yi is a lot more expensive than the rest376

of the inner loop computations, so it would be a good idea to do multiple updates377

in the inner loop. We present a more efficient version of the RPCD in Algorithm 3.2378

which we call RPCD+ algorithm. In RPCD+, we repeat the updating process as long379

as the change in the relative error would be less than a certain threshold ε′, which380

can be much smaller than the stopping criterion threshold ε.381

Algorithm 3.2 RPCD+

Input: Dense tensor X and random initialization for factor matrices {U}
for k = 1 : maxiter do

for i = 1 : d do
Yi ← X ×−i {UT }
G← −Y(i)Y T(i)Ui
∇f ← G+ Ui
Ui ← RUi

(Ui − α∇f)
while {change in the relative error}∆E < ε′ do
G← −Y(i)Y T(i)Ui
∇f ← G+ Ui
Ui ← RUi(Ui − α∇f)

end while
end for

Ek ←
√
‖X‖2F − ‖UTd Y(d)‖2F

/
‖X‖F

if Ek − Ek−1 ≤ ε then
break

end if
end for

Output: Factor matrices {U}

In the next section, we provide a convergence analysis for the proposed method382

as an extension of the coordinate descent method to the Riemannian domain in a383

special case that the search space is a product manifold.384

4. Convergence Analysis. The RPCD method can be thought as a variant385

of Tangent Subspace Descent (TSD) [16]. TSD is the recent generalization of the386

coordinate descent method to the manifold domain. In this section, we generalize the387

convergence analysis of [16] to the case where exponential map and parallel transport388

are substituted by retraction and vector transport, respectively. Convergence analysis389

of the TSD method is a generalization of the Euclidean block coordinate descent390

method described in [3]. The TSD method with retraction and vector transport is391

outlined in Algorithm 4.1. The projections in TSD are updated in each iteration of392

inner loop with the help of the vector transport operator.393
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12 M. H. FIROUZEHTARASH AND R. HOSSEINI

Algorithm 4.1 TSD with retraction and vector transport

Given Rx(ξ) as a retraction from point x in the direction of ξ and T yx as a vector
transport operator from point x to point y.

Input: Initial point x0 ∈M, and P̃ 0 = {P x0

i }mi=1 are orthogonal projections onto m
orthogonal subspaces of the tangent space at x0

for t = 1, 2, ... do
Set y0 := xt−1, P̃ y

0

:= P̃ t−1

for k = 1, ...,m do
αk = 1

Lk
{Lk is the Lipschitz constant for each block of variables which is determined by

the lemma 4.9}
Update yk = Ryk−1(−αkP y

k−1

k ∇f(yk−1))

Update P y
k

i = T y
k

yk−1P
yk−1

i T y
k−1

yk
for i = 1, ...,m

end for
Update xt := ym, P̃ t := P̃ y

m

end for
Output: Sequence {xt} ⊂ M

Before, we start to study the convergence analysis, it would be helpful to quickly394

review some definitions:395

Definition 4.1 (Decomposed norm). It is given by396

‖v‖x,P̃ =

√√√√ m∑
k=1

‖Pkv‖2x , P̃ = {Pj}j∈{1,...,m},397

where ‖ · ‖x is the Riemannian norm at point x. This norm can be considered as a398

variant of L2-norm w.r.t orthogonal projections P̃ .399

Definition 4.2 (Vector transport). It is a mapping from a tangent space at point400

on a manifold to another point on the same manifold,401

T y
k

yk−1ζyk−1 = Tηζyk−1 ∈ TykM ; η = R−1
yk−1(yk),402

satisfying some properties [5, Section 10.5]. We assume that our vector transport is403

an isometry.404

Definition 4.3 (Radially Lipschitz continuously differentiable function). We say405

that the pull-back function f ◦ R is radially Lipschitz continuously differentiable for406

all x ∈ M if there exist a positive constant LRL such that for all x and all ξ ∈ TxM407

the following holds for t > 0 that R(tξ) stays on manifold.408 ∣∣∣ d
dτ
f ◦ R(τξ)|τ=t −

d

dτ
f ◦ R(τξ)|τ=0

∣∣∣ ≤ tLRL‖ξ‖409

Definition 4.4 (Operator Sk). It is given as,410

S0 = id Ty0M , Sk = T y
0

y1 ... T y
k−1

yk
= Sk−1T y

k−1

yk
; 1 ≤ k ≤ l,411

where id is the identity operator. With this operator, we can write the update rule for412

the projection matrices as P y
k

i = (Sk)−1P y
0

i Sk.413
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Definition 4.5 (Retraction-convex). Function f : M → R is retraction-convex414

w.r.t R for all η ∈ TxM, ‖η‖x = 1, if the pull-back function f(Rx(tη)) is convex for415

all x ∈M and t > 0, while Rx(τη) is defined for τ = [0, t].416

Proposition 4.6 (First-order characteristic of retraction-convex function). If f :417

M → R is retraction-convex, then we know by definition that pull-back function is418

convex, so by the first-order characteristic of convex functions we have,419

f(Rx(tη)) ≥ f(Rx(sη)) + (t− s)(f ◦ Rx)′(s).420

The second term can interpret as421

(f ◦ Rx)′(s) = Df(Rx(sη))[R′x(sη)] = 〈∇f(Rx(sη)),R′x(sη)〉Rx(sη),422

thus, for the t = 1, s = 0,423

f(Rx(η)) ≥ f(x) + 〈∇f(x), η〉x.424

Proposition 4.7 (Restricted Lipschitz-type gradient for pullback function). We425

know by [6, Lemma 2.7] that if M is a compact submanifold of the Euclidean space426

and if f has Lipschitz continuous gradient, then427

f(Rx(η)) ≤ f(x) + 〈∇f(x), η〉x +
Lg
2
‖η‖2x, ∀η ∈ TxM,428

for some Lg > 0429

First we study the first-order optimality condition in the following proposition.430

Proposition 4.8 (Optimality Condition). If function f is retraction-convex and431

there would be a retraction curve between any two points on the Riemannian manifold432

M, then433

∇f(x∗) = 0 ⇔ x∗ is a minimizer.434

Proof. Considering any differentiable curve Rx∗(tη), which starts at a local op-435

timum point x∗, the pull-back function f(Rx∗(tη)) has a minimum at t = 0 because436

Rx∗(tη)
∣∣
t=0

= x∗. we know that (f ◦ R)′(0) = 〈∇f(x∗), η〉x∗ , so for this to be zero437

for all η ∈ Tx∗M, we must have ∇f(x∗) = 0.438

From the first-order characteristic of the retraction-convex function f we had,439

f(Rx∗(η)) ≥ f(x∗) + 〈∇f(x∗), η〉x∗ , ∀η ∈ R−1x∗ (x),440

and if ∇f(x∗) = 0 then f(x) ≥ f(x∗), hence the point x∗ is a global minimum point.441

With the following Lip-Block lemma and the descent direction advocated by the442

Algorithm 4.1, we can proof the Sufficient Decrease lemma.443

Lemma 4.9 (Lip-Block). If f has the restricted-type Lipschitz gradient, then for444

any i, k ∈ {1, ...,m} and all ν ∈ Im(P k−1i ) ⊂ Tyk−1M, where Im(·) is the subspace445

that a projection matrix spans, there exist constants 0 < L1, ..., Lm <∞ such that446

(4.1) f(Ryk−1(ν)) ≤ f(yk−1) + 〈∇f(yk−1), ν〉yk−1 +
Li
2
‖ν‖2yk−1 .447

Proof. By the fact that ν ∈ Tyk−1M, it can be seen easily that (4.1) is the block448

version of the Restricted Lipschitz-type gradient for the pullback function.449
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Lemma 4.10 (Sufficient Decrease). Assume f has the restricted-type Lipschitz450

gradient, and furthermore f ◦R is a radially Lipschitz continuous differentiable func-451

tion. Using the projected gradient onto the kth subspace in each inner loop iteration452

of Algorithm 4.1, i.e. ν = − 1
Lk
P y

k−1

k ∇f(yk−1), we have453

(4.2) f(y0)− f(ym) ≥
m∑
k=1

1

2Lk
‖P y

k−1

k ∇f(yk−1)‖2yk−1 .454

The following inequality also holds455

(4.3) ‖P y
0

i ∇f(y0)− P y
0

i Si−1∇f(yi−1)‖2y0 ≤ C
i−1∑
j=1

‖P y
j−1

j ∇f(yj−1)‖2yj−1 ,456

for C = (m − 1)L2
RL/L

2
min, where Lmin = min{L1, . . . , Lm} and LRL is the radially457

Lipschitz constant. Furthermore, there is a lower-bound on the cost function decrease458

at each iteration of the outer loop in Algorithm 4.1:459

(4.4) f(y0)− f(ym) ≥ 1

4Lmax(1 + Cm)
‖∇f(y0)‖2

y0,P̃
,460

where Lmax = max{L1, . . . , Lm}.461

Proof. With the stated descent direction ν, the inequality in the Lip-Block lemma462

turns to463

f(yk−1)− f(yk) ≥ 1

2Lk
‖P y

k−1

k ∇f(yk−1)‖2yk−1 .464

Now by summation over k inequalities at each inner loop, we reach (4.2).465

For proving that the inequality (4.3) holds, we do as follows. We know that466

‖∇f(y0)− Si−1∇f(yi−1)‖2y0 ≥ ‖P
y0

i ∇f(y0)− P y
0

i Si−1∇f(yi−1)‖2y0 .467

So for proving the inequality, it suffices to show that468

‖∇f(y0)− Si−1∇f(yi−1)‖2y0 ≤ C
i−1∑
j=1

‖P y
j−1

j ∇f(yj−1)‖2yj−1 .469

It can be shown as follows.470

‖∇f(y0)− Si−1∇f(yi−1)‖2y0 =

∥∥∥∥∥
i−1∑
j=1

Sj−1∇f(yj−1)− Sj∇f(yj)

∥∥∥∥∥
2

y0

471

≤

[
i−1∑
j=1

∥∥∥∥Sj−1∇f(yj−1)− Sj∇f(yj)

∥∥∥∥
y0

]2
472

≤ (i− 1)

i−1∑
j=1

∥∥∥∥∇f(yj−1)− T j−1j ∇f(yj)

∥∥∥∥2
yi−1

473

≤ (i− 1)

i−1∑
j=1

L2
RL

∥∥∥− 1

Lj
P y

j−1

j ∇f(yj−1)
∥∥∥2
yi−1

474

≤ (m− 1)L2
RL

L2
min

i−1∑
j=1

∥∥∥P yj−1

j ∇f(yj−1)
∥∥∥2
yi−1

.475

476
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where we apply triangular inequality in line 2, the Cauchy-Schwarz inequality in line477

3 and because f ◦ R is a radially Lipschitz continuous differentiable function, we478

conclude that there exists a constant such as LRL in line 4. Thus, C in the inequality479

(4.3) is equal to (m− 1)L2
RL/L

2
min.480

Now we are ready to prove the Sufficient Decrease inequality (4.4). For every481

i = 1, ...,m, we have482 ∥∥∥∥P y0i ∇f(y0)

∥∥∥∥2
y0

=
∥∥∥P y0i ∇f(y0)− P y

0

i Si−1∇f(yi−1) + P y
0

i Si−1∇f(yi−1)
∥∥∥2
y0

483

≤
(∥∥∥P y0i ∇f(y0)− P y

0

i Si−1∇f(yi−1)
∥∥∥
y0

+
∥∥∥P y0i Si−1∇f(yi−1)

∥∥∥
y0

)2

484

≤ 2
∥∥∥P y0i ∇f(y0)− P y

0

i Si−1∇f(yi−1)
∥∥∥2
y0

+ 2
∥∥∥P y0i Si−1∇f(yi−1)

∥∥∥2
y0

485

= 2
∥∥∥P y0i ∇f(y0)− P y

0

i Si−1∇f(yi−1)
∥∥∥2
y0

+ 2
∥∥∥Si−1P yi−1

i ∇f(yi−1)
∥∥∥2
y0

486

= 2
∥∥∥P y0i ∇f(y0)− P y

0

i Si−1∇f(yi−1)
∥∥∥2
y0

+ 2
∥∥∥P yi−1

i ∇f(yi−1)
∥∥∥2
yi−1

487

≤ 2C

i−1∑
j=1

∥∥∥P yj−1

j ∇f(yj−1)
∥∥∥2
yj−1

+ 2
∥∥∥P yi−1

i ∇f(yi−1)
∥∥∥2
yi−1

488

489

where we apply triangular inequality in line 2, Cauchy-Schwarz inequality in line 3,490

the update rule for the projection operators in line 4 and the fact that operator S is491

an isometry in line 5. By summing this inequality over i, we get492

∥∥∇f (y0)∥∥2
y0,P

=

m∑
i=1

∥∥∥P y0i ∇f (y0)∥∥∥2
y0

493

≤ 2

m∑
i=1

(1 + (m− i)C)
∥∥∥P yi−1

i ∇f
(
yi−1

)∥∥∥2
yi−1

494

≤ 2(1 + Cm)

m∑
i=1

∥∥∥P yi−1

i ∇f
(
yi−1

)∥∥∥2
yi−1

.495

496

By putting this together with (4.2), we reach (4.4).497

In the following theorem, we give a convergence rate for the local convergence,498

then we prove a global rate of convergence of retraction convex functions.499

Theorem 4.11 (Local convergence). Assume f has the restricted-type Lipschitz500

gradient and is lower bounded. Then for the sequence generated by the Algorithm 4.1,501

we have ‖∇f(xt)‖2
xt,P̃ t → 0, and we have the following as the rate of convergence:502

(4.5) min
i={1,...,t}

‖∇f(xi−1)‖xi−1,P̃ i−1 ≤
√(

f(x0)− f(xt)
)

4Lmax(1 + Cm)
/
t .503

Proof. From the Sufficient Decrease lemma and the fact that f is lower bounded,504

we can easily conclude that505

t→∞ : ‖∇f(xt)‖2
xt,P̃ t → 0 .506
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Also from (4.4) we have507

f(x0)− f(xt) ≥ 1

4Lmax(1 + Cm)

t∑
i=1

‖∇f(xi−1)‖2
xi−1,P̃ i−1 ,508

which leads to (4.5).509

Theorem 4.12 (Global convergence). Let f : M → R be a retraction convex510

function and the Sufficient Decrease lemma holds for the sequence {xt} ⊂ M. If we511

denote the sufficient decrease constant 1/K, i.e.512

L2
min

4Lmax (L2
min + L2

RLm(m− 1))
=

1

K
,513

then for t > 1 and ηt = R−1xt (x∗)514

(4.6) f(xt+1)− f∗ ≤
K‖ηt‖2xt(f(x1)− f∗)

K‖ηt‖2xt + t(f(x1)− f∗)
515

Proof. From the retraction-convexity of function f we have516

0 ≤ f(xt)− f(x∗) ≤ −〈∇f(xt), ηt〉xt ≤ ‖∇f(xt)‖xt‖ηt‖xt .517

After combining that with the result of Sufficient Decrease lemma 4.10, we will have518

f(xt)− f(xt+1) ≥ 1

K‖ηt‖2xt

[
f(xt)− f(x∗)

]2
.519

We know that for every real-valued decreasing sequence At if At − At+1 ≥ αA2
t for520

some α, then At+1 ≤ A1

1+A1αt
. Using this on the above inequality, we reach the521

convergence bound (4.6).522

Transitivity for vector transports, i.e. T yx T zy = T zx , does not hold for Riemannian523

manifolds in general. But due to the fact that each point and each tangent vector in524

a product manifold is represented by cartesian products, we can obtain the constant525

C in a simpler way than what has come in the proof of Lemma 4.10. For product526

manifolds, which is the case of Tucker Decomposition problem (3.1), each orthogonal527

projection of the gradient is simply the gradient of the cost function w.r.t the variables528

of one of the manifolds in the product manifold, and therefore the gradient projection529

belongs to the tangent space of that manifold. For a tangent vector which satisfies530

ξy0 = R−1y0 (yi−1) which is the case for product manifolds, we have531

‖∇f(y0)− Si−1∇f(yi−1)‖2y0 ≤ L2
RL‖ξy0‖2532

≤ L2
RL

i−1∑
j=1

∥∥∥− 1

Lj
P y

j−1

j ∇f(yj−1)
∥∥∥2
yi−1

533

≤ L2
RL

L2
min

i−1∑
j=1

∥∥∥P yj−1

j ∇f(yj−1)
∥∥∥2
yi−1

.534

535

So, the term m − 1 is removed from the rates of convergence in Theorem 4.11 and536

Theorem 4.12, thus they match the rates of convergences of the coordinate descent537

method in the Euclidean setting [3].538

The Tucker Decomposition problem (3.1) is not retraction convex, so we can not539

use the result of Theorem 4.12 for it. But by Proposition 4.7 and the fact that the ob-540

jective function is lower bounded, we reach the following corollary from Theorem 4.11.541
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Corollary 4.13. The RPDC algorithm given in Algorithm 3.1 with m = d has542

the same rate of local convergence as given in Theorem 4.11, wherein C = L2
RL/L

2
min.543

It is worth noting that the proof of convergence for the HOOI method witch544

solves the same objective function was investigated in [36], but it did not provide a545

convergence rate.546

5. Experimental Results. In this section, we evaluate the performance of our547

proposed methods on synthetic and real data. The experiments are performed on a548

laptop computer with the Intel Core-i7 8565U CPU and 16 GB of memory1. For the549

stopping criterion, we use relative error delta which is the amount of difference in550

the relative error in two consecutive iterations, i.e., |relErrk − relErrk−1| < ε, where551

relErrk is the relative error ‖X̂ − X‖/‖X‖ at the kth iteration. For the RPCD+552

algorithm, we choose ε′ = ε/10. The stepsize for RPCD and RPCD+ is set to one.553

For the tables, ε is put to 0.001 in a sense that if the algorithm is unable to reduce554

the relative error one tenth of a percent in the current iteration, it would stop the555

process. For the figures, ε is set to 10−5.556

For an accurate comparison, the stopping criterion of other algorithms are also set557

to the relative error delta. The reported time for each method is the actual time that558

the method spends on the computations which leads to the update of the parameters,559

and the time for calculating the relative error or other computations are not take560

into the account. For the RPCD+ algorithm, we also take into the count the time561

needed to evaluate the relative error in the inner loop. For implementing RPCD, we562

use the Tensor Toolbox [22] and for the retraction we use the qr unique function in563

the MANOPT toolbox [7].564

5.1. Synthetic Data. In this part, we give the results for two cases of Tucker565

Decomposition on dense random tensors. In both cases, the elements of random matri-566

ces or tensors are drawn from a normal distribution with zero mean and unit variance.567

In the first case, we generate a rank-(r1, r2, r3) tensor A1 from the i-mode production568

of a random core tensor in Rr1×r2×r3 space and 3 orthonormal matrices constructed569

by QR-decomposition of random ni by ri matrices. In the second case, which has570

more resemblance with the real data with an intrinsic low-rank representation, we571

construct the tensor A2 by adding noise to a low-rank tensor,572

A2 = L/‖L‖F + 0.1 ∗ N/‖N‖F ,573

where L is a low-rank tensor similar to A1 and N is a tensor with random elements.574

In both experiments, we set r1 = r2 = r3 = 5. Because of the memory limitation,575

we increase the dimension of just the first order of the dense tensor to have the576

performance comparison in higher dimensions. Each experiment is repeated 5 times577

and the reported time is the average value. The results can be seen in Table 1.578

As it can easily seen from Table 1, by increasing the dimensionality, the RPCD+579

algorithm which is a first-order method is a lot faster than HOOI method, which is580

based on finding the eigenvectors of a large matrix. Both methods reach desirable581

relative error, zero in the first case and 10% for the second case, in the same number582

of iterations. But as cost of each iteration is less for the RPCD+ method, we observe583

a less computational time in total.584

1An implementation of the proposed methods can be found via http://visionlab.ut.ac.ir/
resources/rpcd.zip
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Table 1
Execution time comparison in seconds for the RPCD+ and HOOI methods in the low-rank

(A1) and low-rank with noise (A2) settings.

A1 A2

n RPCD+ HOOI RPCD+ HOOI
[100,100,100] 0.03 0.13 0.04 0.14
[ 1k,100,100] 0.10 0.22 0.14 0.26
[10k,100,100] 0.81 3.29 1.04 4.79
[20k,100,100] 1.64 11.23 2.02 16.61
[30k,100,100] 2.19 23.36 3.21 36.58

5.2. Real Data. In the first experiment of this subsection, we compare the585

RPCD+ and HOOI methods for compressing the images in Yale face database2[4].586

This dataset contains 165 grayscale images of 15 individual. There are 11 images per587

subject in different facial expressions or configuration, thus we have a dense tensor588

X ∈ R64×64×11×15. For two levels of compression, we decompose X to three tucker589

tensor with multi-linear rank (16, 16, 11, 15) and (8, 8, 11, 15), respectively. The results590

are shown in Figure 2.591

(a) 16x16 (b) 8x8

Fig. 2. Compression of Yale face database (1th row) with HOOI (2th row) and RPCD+ (3th row)

The first row in each figure contains the original images, the second and third592

rows contain the results of the compression usin the HOOI and RPCD+ methods, re-593

spectively. The attained Relative error for both algorithms are the same but RPCD+594

is faster (0.12 vs 0.19 seconds) for the case of 16×16. The difference in speed becomes595

larger (0.09 vs 0.16 seconds), when we want to compress the data more, that is the596

case of 8× 8.597

In another comparison for the real data, we compare RPCD, RPCD+ and HOOI598

with a newly introduced SVD-based method called D-Tucker [19]. D-Tucker com-599

presses the original tensor by performing randomized SVD on slices of the re-ordered600

tensor and then computies the orthogonal factor matrices and the core tensor using601

SVD. [19] reported that this method works well when the order of a tensor is high in602

two dimensions and the rest of the orders are low, that is for Xre ∈ RI1×I2×K3×...×Kd603

we have I1 ≥ I2 >> K3 ≥ ... ≥ Kd. Because, the term L = K3 × ...×Kd, determines604

how many times the algorithm needs to do randomized SVDs for the slices.605

The comparative results on the real data are given in Table 2 and Figure 3. Except606

D-Tucker that does not need any initialization, we initialize the factors matrices to607

have one at main diagonal and zero elsewhere as it is common for iterative eigen-608

2You can find a 64x64 version in http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Table 2
Execution time in seconds and relative error for the D-Tucker, RPCD, RPCD+ and HOOI

methods on the real datasets.

Dataset Yale [4] Brainq [26] Air Quality3 HSI [13] Coil-100 [28]

Dimension [64 64 11 15] [360 21764 9] [30648 376 6] [1021 1340 33 8] [128 128 72 100]

Target Rank [5 5 5 5] [10 10 5] [10 10 5] [10 10 10 5] [5 5 5 5]

Time Error Time Error Time Error Time Error Time Error

D-Tucker 0.17 30.47 1.02 77.26 0.91 33.85 4.80 45.13 5.61 36.65

RPCD 0.08 30.02 4.71 78.35 1.61 32.87 11.42 43.69 2.91 36.41

RPCD+ 0.05 29.93 4.74 77.87 1.45 32.74 7.88 43.48 1.92 36.35

HOOI 0.07 29.92 86.46 77.92 68.21 32.72 8.06 43.42 1.48 36.35
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(e) Yale Face

Fig. 3. Convergence behavior of different methods for the real datasets. Y-axis is the difference
between the relative error at each iteration and the best achieved related error.

solvers. As it can be seen in Table 2, The RPCD+ method almost always has better609

final relative error than RPCD, due to the precision update process. Sometimes610

it is also faster due to smaller number of iterations it needs to converge. In Air611

Quality and HSI datasets, the D-Tucker method has computational advantage, but612

as it can be seen in Figure 3, this advantage is because it stops early and therefore613

it lacks good precision. For Yale and Coil-100 which have large L, D-Tucker lose its614

advantage meanwhile RPCD+ and HOOI do a good job in speed and precision. Both615

RPCD+ and HOOI present the best low multi-linear rank approximation, but HOOI616

is substantially slower when the dimensionality is high. An important observation617

from these experiment is that RPCD+, as a general method, has a solid performance618

in lower dimensions and superior performance in high-dimensional cases, which we619

saw also in the results of the synthetic data.620

For all datasets except Brainq, we observe almost identical convergence behavior621

when we start at different starting points. The effect of different initialization on the622
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Fig. 4. Convergence behavior for decomposing the Brainq dataset using different random ini-
tializations.

performance of different methods for Brainq can be seen in Figure 4.623

6. Conclusion. In this paper, we introduced RPCD and its improved version624

RPCD+, first-order methods solving the Tucker Decomposition problem for high-625

order, high-dimensional dense tensors with Riemannian coordinate descent method.626

For these methods, we constructed a Riemannian metric by incorporating the second627

order information of the reformulated cost function and the constraint. We proved628

a convergence rate for general tangent subspace descent on Riemannian manifolds,629

which for the special case of product manifolds like Tucker Decomposition matches630

the rate in the Euclidean setting. Experimental results showed that RPCD+ as a631

general method has the best performance among competing methods for high-order,632

high-dimensional tensors.633

For a future work, it would be interesting to examine the RPCD method in634

solving tensor completion problems. Another interesting line of thought would be635

to incorporating latent tensors between original tensor X and projected tensor Y for636

further reducing computation costs.637
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