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RIEMANNIAN PRECONDITIONED COORDINATE DESCENT
FOR LOW MULTI-LINEAR RANK APPROXIMATION*

MOHAMMAD HAMED FIROUZEHTARASH! AND RESHAD HOSSEINT!

Abstract. This paper presents a fast, memory efficient, optimization-based, first-order method
for low multi-linear rank approximation of high-order, high-dimensional tensors. In our method,
we exploit the second-order information of the cost function and the constraints to suggest a new
Riemannian metric on the Grassmann manifold. We use a Riemmanian coordinate descent method
for solving the problem, and also provide a local convergence analysis matching that of the coordinate
descent method in the Euclidean setting. We also show that each step of our method with unit
step-size is actually a step of the orthogonal iteration algorithm. Experimental results show the
computational advantage of our method for high-dimensional tensors.

Key words. Tucker Decomposition, Riemannian Optimization, Pre-Conditioning, Coordinate
Descent, Riemannian Metric

AMS subject classifications. 15A69, 49M37, 53A45, 65F08

1. Introduction. High-order tensors often appear in factor analysis problems in
various disciplines like psychometrics, chemometrics, econometrics, biomedical signal
processing, computer vision, data mining and social network analysis to just name a
few. Low-rank tensor decomposition methods can serve for purposes like, dimension-
ality reduction, denoising and latent variable analysis. For an overview of high-order
tensors, their applications and related decomposition methods see [21] and [31]. The
later is more recent with a focus on signal and data analysis.

Tensor decomposition may also be considered as an extension of principal compo-
nent analysis from matrices to tensors. For more information on that see [37]. From
all kinds of decompositions in the multi-linear algebra domain, we want to focus on
Tucker decomposition. Introduced by [33], a tensor X € R™*-*"d with multi-linear
rank-(r1,...,74) can be written as the multiplication of a core tensor with some ma-
trices called factor matrices. Factor matrices can be thought as principal components
for each order of the tensor. Tucker decomposition can be written as

XZCXlUl XQ...XdUd,

where C € R"**"¢ and U; € St(n;,r;) denote the core tensor and each of the
factor matrices, respectively. The constraint St(n;,r;) is the set of all orthonormal r;
frames in R™ which used to guarantee the uniqueness of this decomposition. Usually
r; << n; so the tensor C can be thought as the compressed or dimensionally reduced
version of tensor X. The storage complexity for Tucker decomposition is in the order
of O(r?+dnr), instead of O(n?) for the original tensor X. In this setting, it is enough
to find the factor matrices because it can be shown that with tensor X and set of
factor matrices {U} at hand, the core tensor can be computed as

C=Xx Ul x9...xqUF .

Other common constraints for U;s are statistical independence, sparsity and non-
negativity [9, 27]. These kinds of constraints also impose a prior information on the
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2 M. H. FIROUZEHTARASH AND R. HOSSEINI

latent factors and make the results more interpretable. Additionally because of the
symmetry that exists in the problem, we will later see that we can assume U;s to
be elements of the Grassmann Manifold. Therefore in this paper, we propose a Rie-
mannian coordinate descent algorithm on the product space of Grassmann manifolds
to solve the problem.

Common practice in manifold optimization [1, 5] is all about recasting a con-
strained optimization problem in the Euclidean space to an unconstrained problem
with a nonlinear search space that encodes the constraints. Optimization on mani-
folds have many advantages over classical methods in the constrained optimization.
One merit of Riemannian optimization, in contrast to the common constrained op-
timization methods, is exact satisfaction of the constraints at every iteration. More
importantly, Manifold optimization respects the geometry in the sense that, definition
of inner product can make the direction of gradient more meaningful.

Coordinate descent methods [35] are based on the partial update of the decision
variables. They bring forth simplicity in generating search direction and perform-
ing variable update. These features help a lot when we are dealing with large-scale
and/or high-order problems. Coordinate descent methods usually have empirical fast
convergence, specially at the early steps of the optimization, so they are a good fit
for approximation purposes.

In [16], the authors provided an extension of the coordinate descent method to
the manifold domain. The main idea is inexact minimization over subspaces of the
tangent space at every point instead of minimization over coordinates (blocks of coor-
dinates). They discussed that in the case of product manifolds, the rate of convergence
matches that of the Euclidean setting. With that in mind, we try to compute the
factor matrices in Tucker decomposition in a coordinate descent fashion. We do this
by solving an optimization problem for each factor matrix with a reformulated cost
function and the Grassmann manifold as the constraint.

Gradient-based algorithms, which commonly used in large-scale problems, some-
times have convergence issues. So finding a suitable metric helps to obtain better
convergence rates. In the construction of a Riemannian metric, the common focus
is on the geometry of the constraints, but it will be useful to regard the role of the
cost function too when it is possible. This idea was presented in [25] by encoding the
second order information of the Lagrangian into the metric. We use their method to
construct a new metric that leads to an excellent performance.

We put all these considerations together and provide a new method that we
call Riemannian Preconditioned Coordinate Descent (RPCD). Our paper makes the
following contributions:

e Our method is a first-order optimization based algorithm which has advantage
over SVD based methods and second-order methods in large scale cases. It
is also very efficient with respect to the memory complexity.

e We construct a Riemannian metric by using the second-order information of
the cost function and constraint to solve the Tucker decomposition as a series
of unconstrained problems on the Grassmann manifold.

e We provide a convergence analysis for the Riemannian coordinate descent
algorithm in a relatively general setting. This is done by modification of the
convergence analysis in [16] to the case when retraction and vector trans-
port are being used instead of the exponential map and parallel transport.
Our proposed RPCD algorithm for Tucker decomposition is a special case
of Riemannian coordinate descent, and therefore the proofs hold for its local
convergence.
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RIEMANNIAN PRECONDITIONED COORDINATE DESCENT 3

The experimental results on both synthesis and several real data show the high per-
formance of the proposed algorithm.

1.1. Related works. From an algorithmic point of view, there are two ap-
proaches to the Tucker decomposition problem: The first one is Singular Value De-
composition (SVD)-based methods, which are trying to generalize truncated SVD
from matrix to tensor. This line of thought begins with Higher-Order SVD (HOSVD)
[10, 17]. The idea is to find a lower subspace for each unfolding of the tensor X,
ie., Xy, fori =1,...,d. Although HOSVD gives a sub-optimal solution but when
dimensionality is not high it can be used as an initialization for other methods.

Sequentially Truncated HOSVD (ST-HOSVD) [34], is the same as HOSVD but
for efficiency, after finding each factor matrix in each step, the tensor is projected
using obtained factor matrix and the rest of operations are done on the projected
tensor. In an even more efficient method, called Higher Order Orthogonal Iteration
(HOOQI) [11], the authors try to find a low-rank subspace for each Y{;), that is the
matricization of the tensor J = X x _; {UT}. Finding a lower subspace of Y(;) instead
of X(;), HOOI gives a better low multi-linear rank r — (rq,...,74) approximation of
X in compare to HOSVD. Another method in this category is Multi-linear Principal
Component Analysis (MPCA) [24], that is also similar to HOSVD, but with a focus
on the maximization of the variation in the projected tensor C. Hierarchical, stream-
ing, parallel, randomized and scalable versions of HOSVD are also discussed in the
literature [15, 32, 2, 8, 29]. Also a fast and memory efficient method called D-Tucker
were recently introduced in [19].

The second approach is solving the problem using the common second-order opti-
mization algorithms. In [12], [30] and [18], the authors try to solve a reformulation of
the original problem by applying Newton, Quasi-Newton and Trust Region methods
on the product of Grassmann manifolds, respectively. Exploiting the second-order
information results in algorithms converging in fewer iterations and robust to the
initialization. But at the same time, they suffer from high computational complexity.

Although tensor completion is a different problem than tensor decomposition, but
it is worth mentioning tensor completion works of [23] and [20] because of the use of a
first-order Riemannian method on a variant of tensor completion that utilizes Tucker
decomposition. In [23], the tensor completion problem is solved by the Riemannian
conjugate gradient method on the manifold of tensors with fixed low multi-linear rank.
In [20], the authors dealt with the tensor completion problem by solving the same cost
function with the same method as in [23] but this time on a product of Grassmann
manifolds. The difference of our method with the later case is in the cost function
and the method of optimization.

The rest of this paper is organized as follows: In Section 2, we provide some
preliminaries and background knowledge. The problem description, the problem re-
formulation for making it suitable to be solved using the coordinate descent algorithm,
the metric construction, and the presentation of the proposed algorithms are discussed
in Section 3. In Section 4, the convergence proof of the Riemannian coordinate de-
scent algorithm is presented. Experimental results and conclusion comes at the end
of the paper in Sections 5 and 6.

2. Preliminaries and Backgrounds. In this paper, the calligraphic letters are
used for tensors (A, B, ...) and capital letters for matrices (A, B,...). In the follow-
ing subsection, we give some definitions. Then, we give some backgrounds on the
Riemannian preconditioning in the later subsection.
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4 M. H. FIROUZEHTARASH AND R. HOSSEINI

2.1. Definitions. Here, we provide some definitions:

DEFINITION 2.1 (Tensor). A d-order multi-dimensional array X € R™>*--Xnd
with n; as the dimension of the ith order. Fach element in a tensor is represented by
X(k1, ..., kq), for k; € [n;] ={1,--- ,n;}. Scalars, vectors and matrices are 0-, 1- and
2-order tensors, respectively.

DEFINITION 2.2 (Matricization (unfolding)). along the ith order: A matriz X ;) €

R™ 1Lz "5 s constructed by putting tensor fibers of the ith order alongside each other.
Tensor mode-i fibers are determined by fizing indices in all orders except the ith order,
i.e. X(l{il, ceny ki—la o ki—&-l, ceny l{id)

DEFINITION 2.3 (Rank). Rank of a tensor is R, if it can be written as a sum of
R rank-1 tensors. A d-order rank-1 tensor is built by the outer product of d vectors.

DEFINITION 2.4 (Multi-linear Rank). A tensor called rank-(r1,...,rq4) tensor, if
we have rank(X;y) = r;, fori = 1,...,d, which indicates the dimension of the vector
space spanned by mode-i fibers. It is the generalization of the matrixz rank.

DEFINITION 2.5 (i-mode product). For tensor X € R™">**" qnd matriz A €
R™*™i j-mode product X x; A € R™M X XNi—1XmXnit1.-XNd cqn he computed by the
following formula:

Nk
(X x5 A) (koo kiy, Lkiga, oo ka) = Y X (ko ki oo ka) A(L i)
k=1

This product can be thought as a transformation from a n;-dimensional space to
a m-dimensional space, with this useful property; (X x; A);) = AX()-

DEFINITION 2.6 (Tensor norm).
X[ r =X [ 7 = llvec(X)],

where F is the Frobenious norm and vec(.) is the vectorize operator.

DEFINITION 2.7 (Stiefel manifold St(n,r)). The set of all orthonormal r; frames
in R™.

St(n,r) ={X e R : XTX =1I,}.

In this manifold, tangent vectors at point X, are realized by Ex = XQ+ X | B,
where Q € Skew(r) and X, complete the orthonormal basis that forms by X, so
XTX | =0. If vectors in the normal space are identified by vx = X A, we can specify
A by implying the orthogonality between tangent vectors and normal vectors.

ng_I/X : <§X,Vx>:<XQ—|—XLB,XA>:O — AeSym(r)

So, the projection of an arbitrary vector Z € R™*" onto the tangent space would
be equal to Projx 7 = Z — X A which must comply to the tangent vectors constraint,
ie. ETX +XT¢=0:

(Z - XATX +XT(Z-XA)=0 = A=Sym(XTZ).

In Stiefel manifold like any embedded submanifold, the Riemannian gradient V f is
computed by projecting the Fuclidean gradient G onto the tangent space of the current

This manuscript is for review purposes only.
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RIEMANNIAN PRECONDITIONED COORDINATE DESCENT 5

point.
VF(X) = ProjxG(X) = G(X) — Xsym(XTG(X)).

Retraction on the Stiefel manifold can be computed by the QR-decomposition,
where diagonal values of the upper triangular matriz R are non-negative.

DEFINITION 2.8 (Grassmann manifold Gr(n,r)). We define two matrices X and
Y to be equal under equivalence relation ~ over St(n,r), if their column space span
the same subspace. We can define one of these matrices as a transformed version
of the other, i.e., X =YQ, for some Q € O(r), where O(r) is the set of all r by r
orthogonal matrices.

We identify elements in the Grassmann manifold with this equivalence class, that
is:

X]={Y € St(n,r): X ~Y}={XQ:Q € O(r)}.

Grassmann manifold Gr(n,r) is a quotient manifold, St(n,r)/O(r) = {[X]: X €
St(n,p)}, which represents set of all linear r-dimensional subspaces in a n-dimensional
vector space.

Consider a quotient manifold that is embedded in a total space M given by the
set of equivalence classes [x] = {y € M : y ~ z}. If the Riemannian metric for the
total space M satisfies the following property:

<€x777:c>x = <€y7ny>y ) VCC,@/ € [$]7

then a Riemannian metric for the tangent vectors in the quotient manifold can be
given by:

) M e = Ear M) = (Eysy)y  » Yo,y € [2],

where (-,+), is the Riemannian metric at point x, and vectors &, and 1, belong to
H., the horizontal space of T, M, which is the complement to the vertical space V.
If the cost function in the total space does not change in the directions of vectors in
the vertical space, then the Riemannian gradient in the quotient manifold is given by:

Vigf =Vaf

A retraction operator Ry : Hy — M can be given by:

where R (.) is a retraction in the total manifold.

2.2. Riemannian Preconditioning. Mishra and Sepulchre in [25] brought the
attention to the relation between the sequential quadratic programming which embeds
constraints into the cost function and the Riemannian Newton method which encodes
constraints into search space. In the sequential quadratic programming, we solve a
subproblem to obtain a proper direction. For the following problem in R",

mzin fx)

st. h(z)=0

This manuscript is for review purposes only.
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6 M. H. FIROUZEHTARASH AND R. HOSSEINI

where f: R” — R and h : R™ — R? are smooth functions, the Lagrangian is defined
as

L(z,A) = f(z) = (A h(2)).

Since the first-order derivative Ly (x, A) is linear with respect to A, we have a closed
form solution for the optimal A, that is given by

Ao = (ha(2) " he(2)) " ha(2)" fo(@),

where f, is the first-order derivative of the cost function f(z) and h,(z) € R™*P is the
Jacobian of the constraints h(x). Then, the proper direction at each iteration of the
sequential quadratic programming is computed by solving the following optimization
problem:

win (@) + (o(0).6) + 36 DL DD,
st Dh(zx)[¢] =0.

(2.1)

The constraints h(x) can be seen as the defining function of an embedded submani-
fold. If (&;, D?L(zk, A\z)[€2]) is strictly positive for all €, in the tangent space of this
submanifold at the point x, then the optimization problem has a unique solution.
There are two reasons why the obtained direction can be seen as a Riemannian New-
ton direction. First, the constraint Dh(z)[¢,] = 0, that is the Euclidean directional
derivative of h(x) in the direction of £, € R™, implies the fact that the direction must
be an element of the tangent space. Second, the last part of the objective can be seen
as an approximation of the Hessian.

In the neighborhood of a local minimum, Hessian of the Lagrangian in the total
space efficiently gives us the second-order information of the problem. The Theorem
below is brought for more clarification.

THEOREM 2.9 (Theorem 3.1 in [25]). Consider an equivalence relation ~ in M.
Assume that both M and M/ ~ have the structure of a Riemannian manifold and
a function f : M — R is a smooth function with isolated minima on the quotient
manifold. Assume also that M has the structure of an embedded submanifold in R™.
If x* € M is the local minimum of f on M, then the followings hold:

o (1, D?L(x*, Ag+)[0e-]) = 0, Vi € Ve
o the quantity (Ex+, D?L(x*, Ay )[E4+]) captures all second-order information of
the cost function f on M/ ~ for all £z« € Hon
where Vy« is the vertical space, and H,~ is the horizontal space (that subspace of Typ» M
which is complementary to the vertical space) and D?L(z*, Ay )[4+ is the second-
order deriative of L(x,\;) with respect to x at x* € M applied in the direction of
Err € Hyr and keeping A~ fized to its least-squares estimate.

As a consequence of the above theorem, the direction of the subproblem (2.1) of
the sequential quadratic programming in the neighborhood of a minimum can also be
obtained by solving the following subproblem:

. 1
Hél?l_[l f(x) = {fa(2), &) + §<§maD2£(xa)‘z)[fx]>'

x x

ar
8 3
After updating the variables by moving along the obtained direction, to maintain strict

feasibility, it needs a projection onto the constraint, thus they name this method fea-
sibly projected sequential quadratic programming. Now that we know that Lagrangian
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captures second-order information of the problem, authors in [25] introduced a family
of regularized metrics that incorporate the second information by using the Hessian
of the Lagrangian,

(€asNx)a = wi(&a, D2f($)[77r]> + w2 (e, DQC(Ia Az )[M2])s

which ¢(z,Ay) = —(Az, h(z)). The first and second terms of this regulated metric
correspond to the cost function and the constraint, respectively. In addition to in-
variance, the metric needs to be positive, so:

if fiz =0 then w; =1, wr=wel0,1),
if foz <0 then wy=1, w3 =we](0,1),

where w can also update in each iteration by a rule like w* = 1 — 2% Mishra and
Kasai in [20] exploited the idea of Riemannian preconditioning for tensor completion
task.

3. Problem Statement. In Tucker Decomposition, we want to decompose a d-
order tensor X' € R™*-*"d into a core tensor C € R™* %" and d orthonormal factor
matrices U; € R™*"i, We do this by solving the following optimization problem:

i X —Cx1Uj Xg... xqUyll?
C7UT}HUd H 1 U1 X2 d d||p»

(31) st. Ce erx...xrd7
UiESt(ni,ri), xS [1,...,d],

where ||.||r is the Frobenius norm and x; is the i-mode tensor product. Domain of
the objective function is the following product manifold,

(C,Ul, o Ug) e M= R X XTd ¢ St(nl,rl) X ... X St(nd,rd).

Objective function has a symmetry for the manifold of orthogonal matrices O(r;),
ie, f{U}) = f({UO}). So, this problem is actually an optimization problem on the
product of Grassmann manifolds.

One can use alternating constrained least squares to solve Tucker Decomposition.
Our method can be considered as a partially updating alternating constrained least
squares method, because we want to solve the problem 3.1 in a coordinate descent
fashion on a product manifold. So, at each step we partially solve the following
problem,

min 1||X~ —UUF X |12

U;eGr(n;,r;) 2 () e @NIF

where X(;y is the matricization of the tensor X along ith order. For computing of the
Euclidean gradient given below

GUi) = —[(X) — UU] X)) X3 Ui + X5y (X () — X UUTDU),
we face the computational complexity of O(n?*2r2). In coordinate descent methods,

simplicity in the computation of partial gradient is a key component to efficiency of the
method. In that matter, we move tensor X to a lower dimensional subspace by the help

This manuscript is for review purposes only.
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8 M. H. FIROUZEHTARASH AND R. HOSSEINI

of the fixed factor matrices and construct the tensor ); € R"1 X X7i-1 XNiXTit1...XTq
with the formulation of J; = X x _; {UT}. The new problem would be,

3

Yy — U;ULY 3 ||
Uegl(gm)QH ) — UiU; Yo ll e

where Y(;) is the matricization of the tensor }; along ith order. This time the Euclid-
ean gradient is equal to

G(U:) = =Yy — UU Y ) YihUs + Yoy (Yo — Y UiUDU),

which due to the orthonormality of U; can be reduced to —(I — UleT)Y(Z)Yg) U,. It has

the computational complexity of O(n?r4*+1), which is lower than the previous form.

We can take a step further and make the objective function even simpler. Here,
we show that instead of minimizing the reconstruction error, we can maximize the
norm of the core tensor.

[ = (U} =luee(X) ~ @ Vel O
=|jvec(X)||% — 2(vec(X ®Uvec )+ ||®Uvec )%
=|jvec(X)||% — ®UTvec ), vec(C)) + ||vec(C)||%

=[XIl% - lICll%,

where ) is the Kronecker product of matrices and vec() is the vectorization operator.
So, for solving the problem (3.1) we can recast it as a series of subproblems involving
following minimization problem which is solved for the ith factor matrix.

1
3.2 R T
( ) Uiegil(gi’”) 2” ) (7,)HF

The Euclidean gradient of the above cost function is G(U;) = —Y; )Y U;, with the

computational complexity of O(n?r?), which is even cheaper than the later formula-
tion. This is not a new reformulation and can be found as a core concept in the HOOI
method. This form concentrates on the maximization of variation in the projected
tensor, instead of minimization of reconstruction error in the previous formulations.

As we mentioned in the introduction, practical convergence of gradient-based
algorithms suffers from issues like condition number. For demonstrating this problem,
we solve (3.2) on the product of Grassmannian manifolds equipped with the Euclidean
metric,

(&vismu,)u, = Trace(&f nu,),

for decomposing a tensor X € R!00x100x100 with multi-linear rank-(5,5,5). The
relative error for 10 samples of X' can be seen in Figure 1.

To give a remedy for the slow convergence using the Euclidean metric, in the
next subsection we apply Riemannian preconditioning to construct a new Riemannian
metric which we will see in the experiments that it results in a good performance.

3.1. Riemannian Preconditioned Coordinate Descent. In this section, we
want to utilize the idea of Riemannian preconditioning in solving the problem (3.2).

This manuscript is for review purposes only.
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Fic. 1. Convergence of Riemannian coordinate descent with the FEuclidean metric for decom-
posing a random tensor having low multilinear rank. The best attainable relative error is zero, and
it is clear that the method with the Euclidean metric has convergence problems.

For the following problem,

1
in o lUF Y3
Uiegil(l;}ivri) 2H ! ()”F

the Lagrangian is equal to,
1 1
L(U;, \) = —5Tmce(y(”;gUiUiTY(i)) +50 Uru;, — 1),
and the first-order derivative of it w.r.t U; is
Ly, (Ui, \) = —Y(i)Y(ZT)Uz' +UA .
As it is linear w.r.t A\, we can compute optimal A in a least square sense,
T T
Av, = Ui Yoy Y Ui

where Ay, € R"™*" is a symmetric matrix. Second-order derivative along &y is com-
puted as follow
DQ‘C(Uia )\U1) = _}/(Z)}/(z—;gUL + gUi)\Uw

so a good choice for the Riemannian metric that makes the Riemannian gradient close
to the Newton direction would be

<£Ui’77Ui>Ui = 7w<£U7L’ Y(z)}/(Z;nUz> + <§U¢777U71)‘U71> ’

where w € [0, 1] should be chosen in a way to make the metric positive definite. For
simplicity, we choose w = 0, so the metric for this choice would be

<§U71 ) 77U1‘,>U1‘, = <£Ui’ 77Ui>‘Ui>'

Variables in the search space are invariant under the symmetry transformation, there-
fore the computed metric must be invariant under the associated symmetries, i.e.

U= UiQ and My, — Q'\p,Q, Qe O(r),

This manuscript is for review purposes only.
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that holds for the metric. In the embedded submanifolds, we can compute the Rie-
mannian gradient by projecting the Euclidean gradient into the tangent space. As
tangent vectors at point U; in a Stiefel manifold can be represented by ¢ = U;Q+-U; B €
Ty, M, where Q € Skew(r), and by assuming the form of normal vectors to be like
v = U;A € Ny, M, for having tangent and normal vectors to be orthogonal to each
other using the new metric, we must have

(Q,A\y,) =0 = A=5x;", SeSym(r).

Therefore, by putting the normal vectors at U; as v = UZ-S)\{IJ, the projection of
matrix G onto the tangent space can be computed as follows:

Proju,G = G —U;iSAy!,
where
UiT(ProjU,iG) + (ProjU,iG)TUi =0,
therefore
Ao, S+ SAu, = A, (UG + GTU) Ay,

The last equation for finding S is a Lyapunov equation. By the Riemannian submer-
sion theory [1, section 3.6.2] , we know that this projection belongs to the horizontal
space. Thus, there is no need for further projection onto the horizontal space. If we
define G as the Euclidean gradient in the total space, we can simply compute the
Riemannian gradient by

Vf[Ui] =G+ U;.

With the help of the new metric, we introduce the proposed RPCD method in
Algorithm 3.1.

Algorithm 3.1 RPCD

Input: Dense tensor X and random initialization for factor matrices {U}
for £ =1 : maxiter do
fori=1:ddo
Vi X x_; {UT}
SOSRUMOLE
Ui < Ry, (Ui — aVf)
end for
By JIIX I3 — U7 Y13 /11Xl
if B, — Ex_1 < ¢ then
break
end if
end for
Output: Factor matrices {U}

One of the benefits for the tensor decomposition is that the decomposed version
needs much less storage than the original tensor. For example, a d-order tensor
X € R™ %" have n¢ elements, but the compressed version C x;1 Uy Xg ... Xq Uy,
where C € R™%*" and U; € R™*", has only ¢ + dnr elements. This is much smaller
than the original version due to the assumption r << n.

This manuscript is for review purposes only.
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In this setting, n; = n and r; = r, RPCD is memory efficient, which is desirable
because we wanted to reduce the storage complexity of the original tensor X’ at the
first place. To be specific, tensor ) has nr¢~! elements and the Euclidean and the
Riemannian gradient both has nr elements. Presented algorithm is robust w.r.t the
change in step-size value but it is worth noting if we set o« = 1, then one step of
the inner loop in the RPCD algorithm can be consider as one step of the orthogonal
iteration method [14, Section 8.2.4]. In other words, the orthogonal iteration can be
seen as a preconditioned Riemannian gradient descent algorithm.

In Algorithm 3.1, constructing the tensor ; is a lot more expensive than the rest
of the inner loop computations, so it would be a good idea to do multiple updates
in the inner loop. We present a more efficient version of the RPCD in Algorithm 3.2
which we call RPCD+ algorithm. In RPCD+, we repeat the updating process as long
as the change in the relative error would be less than a certain threshold €', which
can be much smaller than the stopping criterion threshold e.

Algorithm 3.2 RPCD—+

Input: Dense tensor X and random initialization for factor matrices {U}
for k =1 : maxiter do
fori=1:ddo
Vi X x_ i {UT}
G+ fY(Z-)Y@T) U;
Vi<~ G+U;
U; RUl(UZ — OéVf)
while {change in the relative error}AE < ¢’ do
G+ —Y(i)Y(lT) U;
Vf+—G+U;
U; + RU,,(UZ — OZVf)
end while
end for
By < JIXI3 U Yia I3 /1%l
if Ek - Ek—l <e then
break
end if
end for
Output: Factor matrices {U}

In the next section, we provide a convergence analysis for the proposed method
as an extension of the coordinate descent method to the Riemannian domain in a
special case that the search space is a product manifold.

4. Convergence Analysis. The RPCD method can be thought as a variant
of Tangent Subspace Descent (T'SD) [16]. TSD is the recent generalization of the
coordinate descent method to the manifold domain. In this section, we generalize the
convergence analysis of [16] to the case where exponential map and parallel transport
are substituted by retraction and vector transport, respectively. Convergence analysis
of the TSD method is a generalization of the Euclidean block coordinate descent
method described in [3]. The TSD method with retraction and vector transport is
outlined in Algorithm 4.1. The projections in TSD are updated in each iteration of
inner loop with the help of the vector transport operator.

This manuscript is for review purposes only.



394
395

396

397

398
399

400

410

411

412
113

12 M. H. FIROUZEHTARASH AND R. HOSSEINI

Algorithm 4.1 TSD with retraction and vector transport

Given R (&) as a retraction from point x in the direction of £ and T¢ as a vector
transport operator from point x to point y.
Input: Initial point 2° € M, and P® = {P=°}™  are orthogonal projections onto m
orthogonal subspaces of the tangent space at x°
fort=1,2,... do
Set y0 1= gt=1, Pv’ = pt-1
for k=1,....,m do
ap = Lflk {L;C is the Lipschitz constant for each block of variables which is determined by
the lemma 4.9}
Update y* = Rykq(—akP,fk_lVf(yk_l))
Update P = T4, PP T4 fori=1,..,m
end for
Update 2! := y™, Pt := pv"
end for
Output: Sequence {z'} C M

Before, we start to study the convergence analysis, it would be helpful to quickly
review some definitions:

DEFINITION 4.1 (Decomposed norm). It is given by

m
||v||z,15 = Z ”ka”i ) P = {Pj}je{l,.uﬂn}v
k=1
where || - || is the Riemannian norm at point x. This norm can be considered as a

variant of La-norm w.r.t orthogonal projections P.

DEFINITION 4.2 (Vector transport). It is a mapping from a tangent space at point
on a manifold to another point on the same manifold,

k
ThoCyer = ToGyrr € T M5 =R (),

satisfying some properties [5, Section 10.5]. We assume that our vector transport is
an isometry.

DEFINITION 4.3 (Radially Lipschitz continuously differentiable function). We say
that the pull-back function f o R is radially Lipschitz continuously differentiable for
all x € M if there exist a positive constant Lry, such that for all x and all £ € T, M
the following holds for t > 0 that R(t§) stays on manifold.

d
—[oR(TE)|r=0| < tLrLI&]|

& FoR(Erms —

dr

DEFINITION 4.4 (Operator S¥). It is given as,

SO =idTpM , St=T74 T4

_ qk—1 .
AT =S 1<k <

where id is the identity operator. With this operator, we can write the update rule for
k 0
the projection matrices as P! = (S*)~1Py Sk.
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DEFINITION 4.5 (Retraction-convex). Function f : M — R is retraction-convex
w.r.t R for alln € TyM, ||n|l, =1, if the pull-back function f(R.(tn)) is convex for
all x € M and t > 0, while R, (7n) is defined for 7 = [0,t].

PROPOSITION 4.6 (First-order characteristic of retraction-convex function). If f :
M — R is retraction-convex, then we know by definition that pull-back function is
convez, so by the first-order characteristic of convex functions we have,

f(Ra(tn)) = f(Ra(sn)) + (t = 5)(f o Ra)'(s).

The second term can interpret as

(f 0 Ra)'(s) = Df(Ra(sn)[Re(sn)] = (VF(Ra(s0)), Re(s0) R0 (sm)

thus, for thet =1,5 =0,

F(R:(n) > f(x) + (Vf(x),n)e-

PROPOSITION 4.7 (Restricted Lipschitz-type gradient for pullback function). We
know by [6, Lemma 2.7] that if M is a compact submanifold of the Fuclidean space
and if f has Lipschitz continuous gradient, then

F(Ran)) < @)+ (V@) + Ll Ve TM,

for some Ly >0
First we study the first-order optimality condition in the following proposition.

PROPOSITION 4.8 (Optimality Condition). If function f is retraction-convex and
there would be a retraction curve between any two points on the Riemannian manifold

M, then
Vf(z*)=0 < ¥ is aminimizer.

Proof. Considering any differentiable curve R« (tn), which starts at a local op-
timum point z*, the pull-back function f(R.«(tn)) has a minimum at ¢ = 0 because
Rm*(tn)|t:0 = z*. we know that (f o R)'(0) = (Vf(x*),n)z=, so for this to be zero
for all n € T« M, we must have V f(z*) = 0.

From the first-order characteristic of the retraction-convex function f we had,

F(Raw(m) 2 f(@*) + (VF(@*),m)ee, V€ RG (),

and if V f(z*) = 0 then f(z) > f(z*), hence the point z* is a global minimum point.O

With the following Lip-Block lemma and the descent direction advocated by the
Algorithm 4.1, we can proof the Sufficient Decrease lemma.

LEMMA 4.9 (Lip-Block). If f has the restricted-type Lipschitz gradient, then for
any i,k € {1,....,m} and all v € Im(Pik_l) C Tye—1 M, where Im(-) is the subspace
that a projection matriz spans, there exist constants 0 < L, ..., L,, < oo such that

@) SRy () S S + (VI e + e

Proof. By the fact that v € Tyx-1 M, it can be seen easily that (4.1) is the block
version of the Restricted Lipschitz-type gradient for the pullback function. 0
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LEMMA 4.10 (Sufficient Decrease). Assume f has the restricted-type Lipschitz
gradient, and furthermore f o R is a radially Lipschitz continuous differentiable func-
tion. Using the projected gradient onto the kth subspace in each inner loop iteration

of Algorithm 4.1, i.e. v = —LikP,fkﬁVf(yk*l), we have

(42) )= 167 2 S 2T
=1
The following inequality also holds
W3 PG - PYSTIV G E <3 1P R
j=1
for C = (m —1)L%, /L2, , where Ly = min{L1,..., Ly} and Ly, is the radially

Lipschitz constant. Furthermore, there is a lower-bound on the cost function decrease
at each iteration of the outer loop in Algorithm 4.1:

1
(4.4) f(yo) - fly™) > m”vﬂyo)njo’p’
where Limay = max{Ly,...,Ly}.

Proof. With the stated descent direction v, the inequality in the Lip-Block lemma
turns to

FOE = 160 2 5 1P VI B

Now by summation over k inequalities at each inner loop, we reach (4.2).
For proving that the inequality (4.3) holds, we do as follows. We know that

IVF(5°) = S V(52 = 1P V(%) — PY SV f (5 ) o

So for proving the inequality, it suffices to show that

i—1 ,
IVF@°) = SV 20 <O IPY VTR
j=1
It can be shown as follows.
i—1 2
IVFW) =SV e = | DSV ) = SV YY)
j=1 y0
i—1 2
< [Z SV - V) ]
j=1 y°
i—1 ‘ ' 2
<E-0)Y |V =TV
j=1 yit
i—1 1
<=0 Ll - =PV
=1 L vy
(m—1)L2, <. ~
= 12 . e Z HPJy V‘f(yj 1) yi-1
mn j:l
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where we apply triangular inequality in line 2, the Cauchy-Schwarz inequality in line
3 and because f o R is a radially Lipschitz continuous differentiable function, we
conclude that there exists a constant such as Lgy, in line 4. Thus, C in the inequality
(4.3) is equal to (m — 1) L%, /L2,

Now we are ready to prove the Sufficient Decrease inequality (4.4). For every
i=1,...,m, we have

0 2 0 o . . o . ) 2
‘Pf’ VIO = |PYVIW) - PSP STV £y ) p
yO
0 0 . . 0 . . 2
< ( PUV ) = PV SV [P s e s 0)
Yy Yy
° 0 0 gi-1 13| 0 gi-1 13 ||?
<2|[PVi) - P ST 2P s e Y|
Y Y

0 o . . 2 } i1 i 2
= 2B Vi) - PSS v )|

yO

. X 2
— 2| PV () — P STV ()

i—1 . 2
P

yi—l

+2‘
0

Y

S e T R L )
j=1

yifl

where we apply triangular inequality in line 2, Cauchy-Schwarz inequality in line 3,
the update rule for the projection operators in line 4 and the fact that operator S is
an isometry in line 5. By summing this inequality over i, we get

lis 2
197 )0, = 3|22 V7 60,
i=1
i i— . 2
§2Z(1+(m—i)0)‘Pf’ VY|
i=1 v
n i—1 ) 2
<21+C 1P )
(1+Cm) ; SR CACD]
By putting this together with (4.2), we reach (4.4). |

In the following theorem, we give a convergence rate for the local convergence,
then we prove a global rate of convergence of retraction convex functions.

THEOREM 4.11 (Local convergence). Assume f has the restricted-type Lipschitz
gradient and is lower bounded. Then for the sequence generated by the Algorithm 4.1,

we have ||Vf(mt)||§t 5 — 0, and we have the following as the rate of convergence:

(4.5) Z.:min ||Vf(1’“1)|

(1,1} -1, pi-1 S \/(f(ﬂﬂo) - f(xt))4LMam(1 + C’m)/t )

Proof. From the Sufficient Decrease lemma and the fact that f is lower bounded,
we can easily conclude that

t—oo : V@)% p —0.
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Also from (4.4) we have

t

t 1 i—
f(xo) — f(a") > m;||vf(m 1)|

2 B
i—1 pi—1
i1 Pt

which leads to (4.5). |

THEOREM 4.12 (Global convergence). Let f : M — R be a retraction convex
function and the Sufficient Decrease lemma holds for the sequence {x'} C M. If we
denote the sufficient decrease constant 1/K, i.e.

ernin 1

+I2,mm-1) K’

AL pax (L2

min

then fort > 1 and n, = R (z*)

e A K||77t||it(f(xl)_f*)
(4.6) ) = f < Rl - 1) = )

Proof. From the retraction-convexity of function f we have

0< f(a") = f(@") < =(VI@") m)ar < AVF@) ot et

After combining that with the result of Sufficient Decrease lemma 4.10, we will have

1
fl@t) = f@™h) > g [f@f) = f(=9)]
K|[nel|3: | ]
We know that for every real-valued decreasing sequence A; if A; — A1 > aA? for
some «, then A;1; < ﬁ. Using this on the above inequality, we reach the
convergence bound (4.6). O

Transitivity for vector transports, i.e. TY7,7 = 7,7, does not hold for Riemannian
manifolds in general. But due to the fact that each point and each tangent vector in
a product manifold is represented by cartesian products, we can obtain the constant
C in a simpler way than what has come in the proof of Lemma 4.10. For product
manifolds, which is the case of Tucker Decomposition problem (3.1), each orthogonal
projection of the gradient is simply the gradient of the cost function w.r.t the variables
of one of the manifolds in the product manifold, and therefore the gradient projection
belongs to the tangent space of that manifold. For a tangent vector which satisfies
§yo = Ry_ol (y*~1) which is the case for product manifolds, we have

IVF(°) =SV I I < Lapléel?

yi—l

i—1
1 i1 NI
<L Y| - B Vi)
j=1 J

2

72 il
< LZRL Z‘

min j:1

j—1 9
Py )|

yifl ’

So, the term m — 1 is removed from the rates of convergence in Theorem 4.11 and
Theorem 4.12, thus they match the rates of convergences of the coordinate descent
method in the Euclidean setting [3].

The Tucker Decomposition problem (3.1) is not retraction convex, so we can not
use the result of Theorem 4.12 for it. But by Proposition 4.7 and the fact that the ob-
jective function is lower bounded, we reach the following corollary from Theorem 4.11.
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COROLLARY 4.13. The RPDC algorithm given in Algorithm 3.1 with m = d has
the same rate of local convergence as given in Theorem 4.11, wherein C' = L2RL/L2

It is worth noting that the proof of convergence for the HOOI method witch

solves the same objective function was investigated in [36], but it did not provide a
convergence rate.

5. Experimental Results. In this section, we evaluate the performance of our
proposed methods on synthetic and real data. The experiments are performed on a
laptop computer with the Intel Core-i7 8565U CPU and 16 GB of memory'. For the
stopping criterion, we use relative error delta which is the amount of difference in
the relative error in two consecutive iterations, i.e., |rel Erry — rel Errg_i1| < €, where
rel Erry is the relative error || X — X||/||X]|| at the kth iteration. For the RPCD+
algorithm, we choose € = €/10. The stepsize for RPCD and RPCD+ is set to one.
For the tables, € is put to 0.001 in a sense that if the algorithm is unable to reduce
the relative error one tenth of a percent in the current iteration, it would stop the
process. For the figures, € is set to 1075,

For an accurate comparison, the stopping criterion of other algorithms are also set
to the relative error delta. The reported time for each method is the actual time that
the method spends on the computations which leads to the update of the parameters,
and the time for calculating the relative error or other computations are not take
into the account. For the RPCD+ algorithm, we also take into the count the time
needed to evaluate the relative error in the inner loop. For implementing RPCD, we
use the Tensor Toolbox [22] and for the retraction we use the qr_unique function in
the MANOPT toolbox [7].

5.1. Synthetic Data. In this part, we give the results for two cases of Tucker
Decomposition on dense random tensors. In both cases, the elements of random matri-
ces or tensors are drawn from a normal distribution with zero mean and unit variance.
In the first case, we generate a rank-(r1,r2,73) tensor A; from the -mode production
of a random core tensor in R™*"2%"s gpace and 3 orthonormal matrices constructed
by @QR-decomposition of random n; by r; matrices. In the second case, which has
more resemblance with the real data with an intrinsic low-rank representation, we
construct the tensor As by adding noise to a low-rank tensor,

Ay = L/|IL]|F 4+ 0.1 N/|N]|p,

where £ is a low-rank tensor similar to .4; and N is a tensor with random elements.

In both experiments, we set r; = ro = r3 = 5. Because of the memory limitation,
we increase the dimension of just the first order of the dense tensor to have the
performance comparison in higher dimensions. Each experiment is repeated 5 times
and the reported time is the average value. The results can be seen in Table 1.

As it can easily seen from Table 1, by increasing the dimensionality, the RPCD+
algorithm which is a first-order method is a lot faster than HOOI method, which is
based on finding the eigenvectors of a large matrix. Both methods reach desirable
relative error, zero in the first case and 10% for the second case, in the same number
of iterations. But as cost of each iteration is less for the RPCD+ method, we observe
a less computational time in total.

LAn implementation of the proposed methods can be found via http://visionlab.ut.ac.ir/
resources/rped.zip
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TABLE 1
Ezecution time comparison in seconds for the RPCD+ and HOOI methods in the low-rank
(A1) and low-rank with noise (Az) settings.

Ax As
n RPCD+ HOOI | RPCD+ HOOI
[100,100,100] 0.03 0.13 0.04 0.14
[ 1k,100,100] 0.10 0.22 0.14 0.26
10k,100,100 0.81 3.29 1.04 4.79
20k,100,100 1.64 11.23 2.02 16.61
30k,100,100 2.19 23.36 3.21 36.58

5.2. Real Data. In the first experiment of this subsection, we compare the
RPCD+ and HOOI methods for compressing the images in Yale face database?[4].
This dataset contains 165 grayscale images of 15 individual. There are 11 images per
subject in different facial expressions or configuration, thus we have a dense tensor
X € RO4x64x1Ix15 - For two levels of compression, we decompose X to three tucker
tensor with multi-linear rank (16, 16,11, 15) and (8, 8,11, 15), respectively. The results
are shown in Figure 2.

(a) 16x16 (b) 8x8

F1G. 2. Compression of Yale face database (1th row) with HOOI (2th row) and RPCD+ (8th row)

The first row in each figure contains the original images, the second and third
rows contain the results of the compression usin the HOOI and RPCD+ methods, re-
spectively. The attained Relative error for both algorithms are the same but RPCD+
is faster (0.12 vs 0.19 seconds) for the case of 16 x 16. The difference in speed becomes
larger (0.09 vs 0.16 seconds), when we want to compress the data more, that is the
case of 8 x 8.

In another comparison for the real data, we compare RPCD, RPCD+ and HOOI
with a newly introduced SVD-based method called D-Tucker [19]. D-Tucker com-
presses the original tensor by performing randomized SVD on slices of the re-ordered
tensor and then computies the orthogonal factor matrices and the core tensor using
SVD. [19] reported that this method works well when the order of a tensor is high in
two dimensions and the rest of the orders are low, that is for X, € RI1x2xKsx...xKaq
we have Iy > I, >> K3 > ... > K4. Because, the term L = K3 X ... X K4, determines
how many times the algorithm needs to do randomized SVDs for the slices.

The comparative results on the real data are given in Table 2 and Figure 3. Except
D-Tucker that does not need any initialization, we initialize the factors matrices to
have one at main diagonal and zero elsewhere as it is common for iterative eigen-

2You can find a 64x64 version in http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Execution time in seconds and relative error for the D-Tucker, RPCD, RPCD+ and HOOI
methods on the real datasets.

Dataset Yale [4] Braing [26] | Air Quality? HSI [13] Coil-100 [28]
Dimension (64 64 11 15] | [360 21764 9] | [30648 376 6] | [1021 1340 33 8] | [128 128 72 100]
Target Rank [555 5] [10 10 5] [10 10 5] [10 10 10 5] [555 5]
Time Error | Time Error | Time Error | Time Error Time Error
D-Tucker 0.17 3047 | 1.02 7726 | 0.91 33.85 | 4.80 45.13 5.61 36.65
RPCD 0.08 30.02 | 4.71 7835 | 1.61 32.87 | 11.42 43.69 2.91 36.41
RPCD+ 0.05 29.93 | 4.74 T77.87 | 1.45 32.74 | 7.88 43.48 1.92 36.35
HOOI 0.07 29.92 | 86.46 77.92 | 68.21 32.72 | 8.06 43.42 1.48 36.35
DT ]] R s
e --a- D-Tucker & ] .-a- D-Tucker
-e- RPCD -o- RP(;\D i |-e- RPCD
ER. . |BRPCD+ .. |-==RPCD+ 5 . |- RPCD+
g 107 2 HOOL i 2 o ®.]- e -HOOI 210k 2 |l.e.noor |
T o, 5 X £
= ®0,, L g 4 S
2107 Sow 02 L g 102 f ‘a 1
= £ . 3 “o.
Y o
-3 | | 3 | g -3 | | o | N
10 10° 10! 10? 1070 10! 102 107100 1092 1094 1098 1098 101 1012
time time time
(a) Braing (b) Air Quality (c) HSI
--a.. D-Tucker g A
-e- RPCD FRE - (U E
—8- RPCD+ H =
- - HOOI B - [-a-D-Tucker | -
R R % |-e- RPCD S
N s 2 " | —a=RPCD+ A
% aad “ |-+ - HOOIL
o, N,
10-3 L | ‘e | ] | 10-3 | ol | | |
100 1002 1004 1006 1008 100 10002 100-04 1006 1(0.08 1001
time time

(d) Coil-100

(e) Yale Face

Fi1G. 3. Convergence behavior of different methods for the real datasets. Y-axis is the difference
between the relative error at each iteration and the best achieved related error.

solvers. As it can be seen in Table 2, The RPCD+ method almost always has better
final relative error than RPCD, due to the precision update process. Sometimes
it is also faster due to smaller number of iterations it needs to converge. In Air
Quality and HSI datasets, the D-Tucker method has computational advantage, but
as it can be seen in Figure 3, this advantage is because it stops early and therefore
it lacks good precision. For Yale and Coil-100 which have large L, D-Tucker lose its
advantage meanwhile RPCD+ and HOOI do a good job in speed and precision. Both
RPCD+ and HOOI present the best low multi-linear rank approximation, but HOOI
is substantially slower when the dimensionality is high. An important observation
from these experiment is that RPCD+, as a general method, has a solid performance
in lower dimensions and superior performance in high-dimensional cases, which we
saw also in the results of the synthetic data.

For all datasets except Braing, we observe almost identical convergence behavior
when we start at different starting points. The effect of different initialization on the
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10° 10° 10°
-4 D-Tucker - D-Tucker -4 D-Tucker
-e- RPCD -o- RPCD -e- RPCD
s -8-RPCD+ —a- RPCD+ ] —a- RPCD+
£ 107! ~¢ |-+ HOOI { <o HOOI £ 107! e |-e-HOOL |
| - - “
= o )
=2 1072 4 B 4 =107 °. 4
E o kY E .
- - ?
o K -
X 8 o .
10-3 .y I ® I 10-3 I
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time time time
10° 10° 10°
-4 D-Tucker -+ D-Tucker -4 D-Tucker
-e- RPCD -o- RPCD -o- RPCD
-8 RPCD+ -8 RPCD+ -8 RPCD+
-1 . . H . . H - —1 . . H
10 o, < - HOOI o - - HOOI £ 10 = ¢ - HOOI
] 0. = EY & E
& 1072 'MM%% 1 2107 e 4 2107 % =
= 'Y -1 ‘o 4 O,OA
-Q o 0,0‘
- ®o0 ®
1073 - oy 1073 - ; 1073 - e
10° 10' 10° 10° 10' 10° 10° 10! 10°
time time time

Fic. 4. Convergence behavior for decomposing the Braing dataset using different random ini-
tializations.

performance of different methods for Braing can be seen in Figure 4.

6. Conclusion. In this paper, we introduced RPCD and its improved version
RPCD+, first-order methods solving the Tucker Decomposition problem for high-
order, high-dimensional dense tensors with Riemannian coordinate descent method.
For these methods, we constructed a Riemannian metric by incorporating the second
order information of the reformulated cost function and the constraint. We proved
a convergence rate for general tangent subspace descent on Riemannian manifolds,
which for the special case of product manifolds like Tucker Decomposition matches
the rate in the Euclidean setting. Experimental results showed that RPCD+ as a
general method has the best performance among competing methods for high-order,
high-dimensional tensors.

For a future work, it would be interesting to examine the RPCD method in
solving tensor completion problems. Another interesting line of thought would be
to incorporating latent tensors between original tensor X and projected tensor ) for
further reducing computation costs.
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